

Exciting times - HD research and clinical trials in HD: an overview

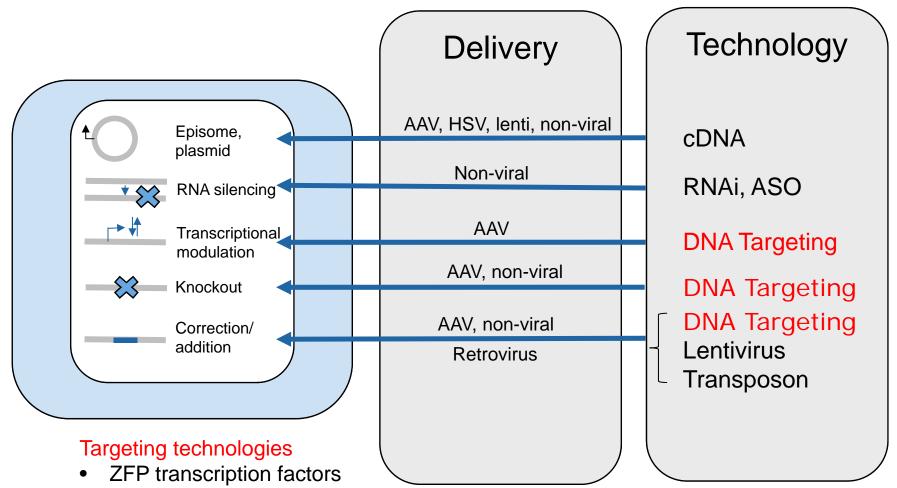
G. Bernhard Landwehrmeyer, MD, FRCP Professor of Neurology, Ulm University, Germany Principal Investigator Enroll-HD

EHA 2017 , Stronger Together', Sofia September 24, 2017

We experience exciting times for HD

Gene silencing has reached HD patients: three clinical trials of gene silencing compounds (ASO) in HD are currently ongoing, the first (IONIS-HTT_{Rx} trial) is almost completed

- Exciting science:
 - Can you go further than 'shooting the messenger' and correct the primary DNA defect? Gene editing as a next frontier – hype and hope
 - Changing CAG sizes through the DNA repair machinery a new therapeutic target?
- The HD clinical trial landscape
- Hopes for tomorrow & help for today



Exciting science

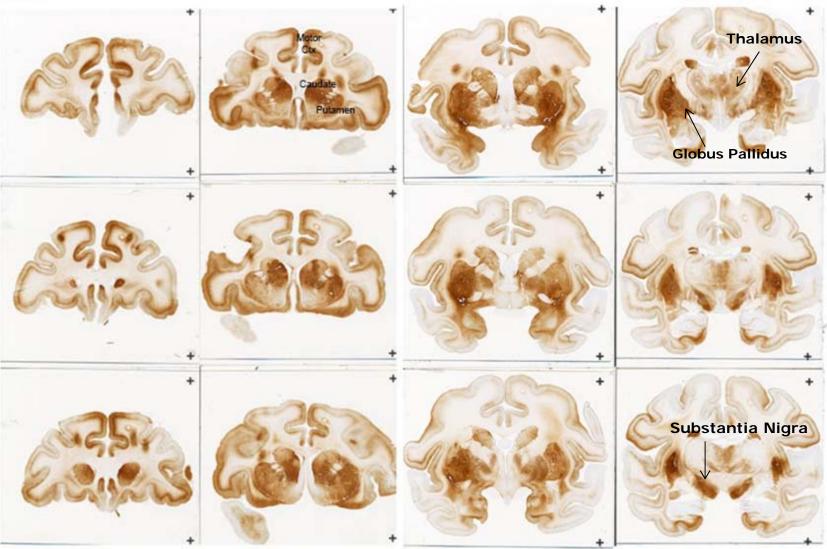
Approaches to gene silencing

Gene-Therapy

- ZF nuclease
- CRISPr/Cas9
- TALENs/meganuclease

rAAV as a Gene Delivery Vector for CNS Disorders

- Replication defective parvovirus
- Transduce non-dividing cells
- Nonpathogenic
- Vector production and purification methods have been established for clinical use
- A single intracranial administration AAV could provide long term suppression of Htt

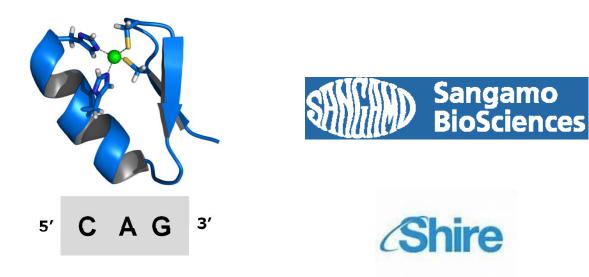


Adeno-Associated Virus (AAV)

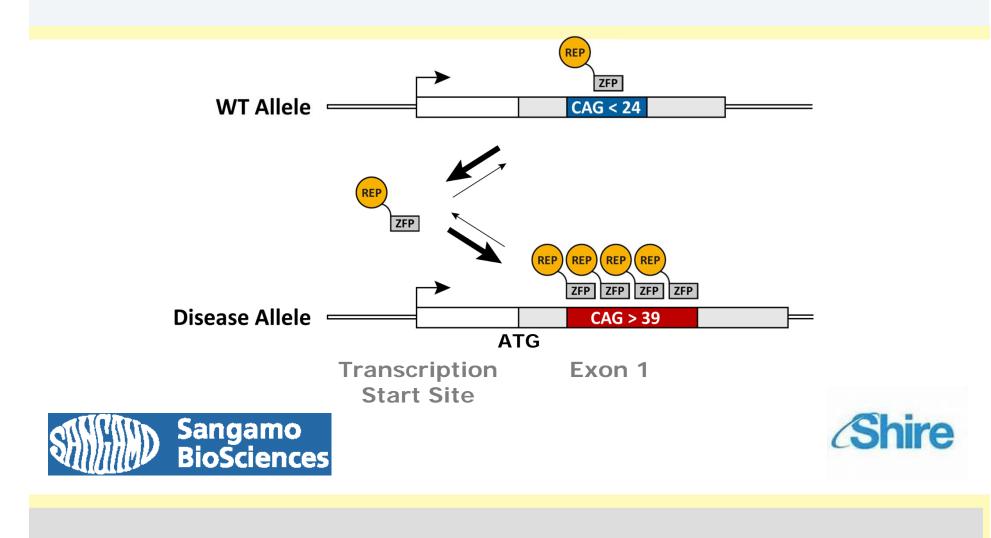
AAV1-eGFP May Produced Widespread Transduction in the Striatum and Cortex

Rostral

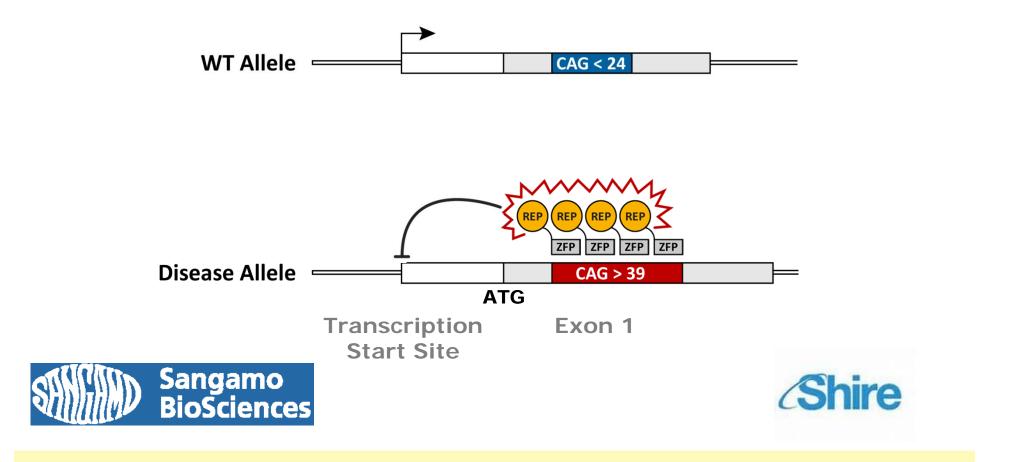
Caudal

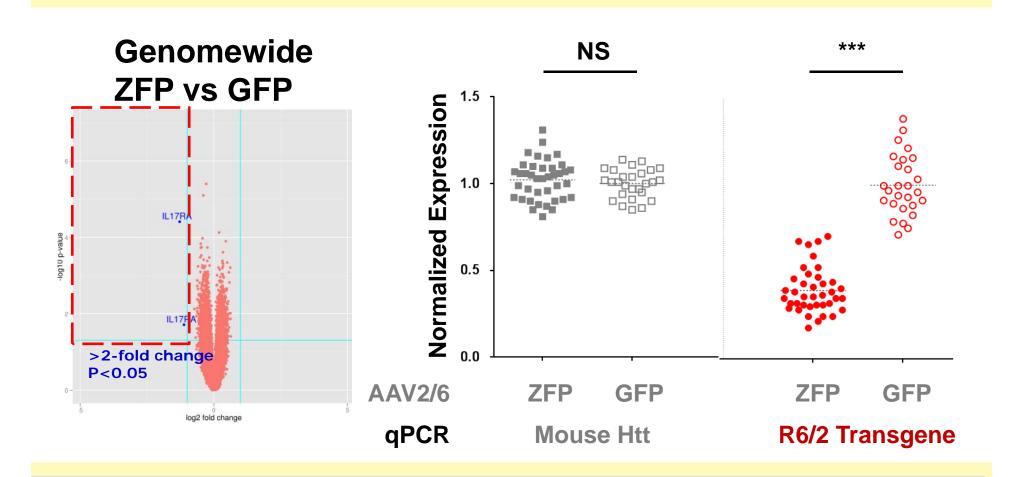

Courtesy of Lisa M. Stanek, Genzyme

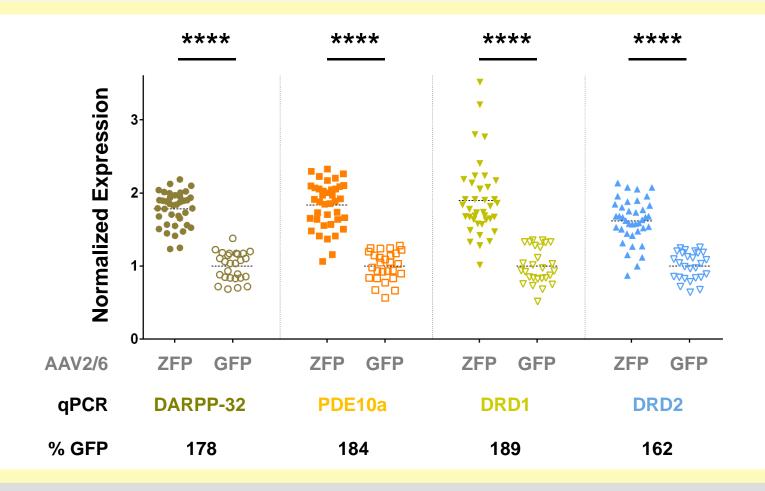
Suppressing the mutant htt gene copy by targeting DNA



Zinc finger DNA binding domains can be engineered to recognize specific target sequences


EHA 2017 ,Stronger Together' , Sofia September 24, 2017


EHA 2017 , Stronger Together', Sofia September 24, 2017


EHA 2017 , Stronger Together', Sofia September 24, 2017

Engineered ZFPs selectively repress mutant HD-alleles

EHA 2017 , Stronger Together', Sofia September 24, 2017

ZFP expression rescues expression of medium spiny neuron markers in R6/2 mice

EHA 2017 , Stronger Together', Sofia September 24, 2017

Correcting the primary genetic alteration at the DNA level: the promise of gene editing

Excitement in the science community

Next >

Ricki Lewis, PhD

Can CRISPR Conquer Huntington's?

Posted June 29, 2017 by Ricki Lewis, PhD in Uncategorized

"I set a high bar for writing about mouse studies. I don't include them in my textbooks or news articles, and only rarely blog about them. But when experiments in mice shine a glimmer of hope on a horrific illness with a long history of failed treatments, I pay attention."

The Journal of Clinical Investigation

Molecular Therapy Original Article

ORIGINAL ARTICLE

BRIEF REPORT

Article

Cell

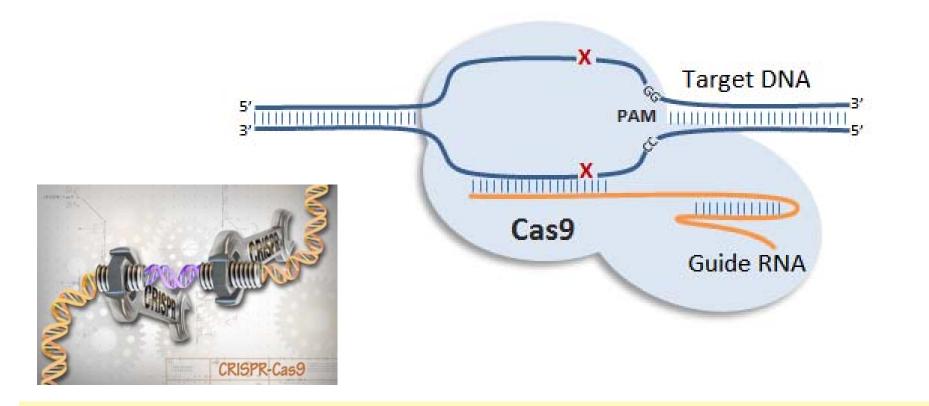
Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9

Ranjan Batra,^{1,2,3,10} David A. Nelles,^{1,2,3,10} Elaine Pirie,^{1,2,3} Steven M. Blue,^{1,2,3} Ryan J. Marina,^{1,2,3} Harrison Wang,^{1,2,3} Isaac A. Chaim,^{1,2,3} James D. Thomas,⁴ Nigel Zhang,^{1,2,3} Vu Nguyen,^{1,2,3} Stefan Aigner,^{1,2,3} Sebastian Markmiller,^{1,2,3} Guangbin Xia,⁵ Kevin D. Corbett,^{1,6,7} Maurice S. Swanson,⁴ and Gene W. Yeo^{1,2,3,8,9,11,*}

EHA 2017 ,Stronger Together', Sofia September 24, 2017

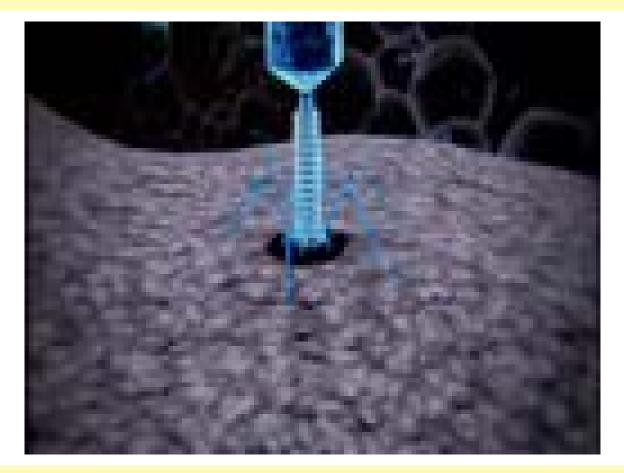
Gene editing for HD – the idea

- In people destined to develop HD there is a string of C-A-G letters that goes on...and on and on...many times more than necessary
- The idea is deleting all those extra "on-andon" repeats


Gene editing versus gene silencing

 The hope: "While RNAi and antisense oligonucleotides can dampen expression of the extended gene, the effect isn't permanent in the way that snipping out the repeat or even the entire gene would be. And a onetime or few-times editing out is preferable to a regular need for treatment." (Ricky Lewis, PhD)

Genome Editing Technology Platforms Comparative Analysis


	ZFNs	TALENs	CRISPR	MegaN/MegaTal
Size	• 1kb x 2	• 3kb x 2	• 4.2kb +0.1kb	• 1-2.5 kb x1
Design Density	• Every ~1.7 bp	Similar to ZFNs	Every 11-50 bp(PAM constrained)	Central 4bp constraint
Specificity	Ability to optimize for on-target/off- target activity	 Single nucleotide binding No ability to optimize 	 Watson-Crick bp binding Specificity for any particular guide is fixed 	 Difficult to design (MN) Optimization possible through protein design (MT)
ex vivo	Multiple programs translated into the clinic (over 80 subjects treated)	 1 program moving to clinic – 2016 (2 subjects treated) 	 Nascent clinical programs 	 No clinical programs
in vivo	 Low immunogenicity risk (ZFP is human protein; ZFNs non- immunogenic in vivo) 	 Immunogenicity risk (bacterial origin) Size constrained 	 Immunogenicity risk (bacterial origin) Size impacts delivery options (2 parts) 	 Immunogenicity risk (bacterial origin)
				Modified courtesy Geoff Nichol

Genome editing – CRISPR-Cas9

EHA 2017 , Stronger Together', Sofia September 24, 2017

EHA 2017 , Stronger Together', Sofia September 24, 2017

3 steps (think about editing a spelling error in a text using your computer)

- 1. Find the mistake by moving your cursor to the right spot where the wrong letters are
- 2. Delete the mistake, cutting out the wrong letters
- 3. Correct the mistake, filling in the right letters

- Find the mistake by moving your cursor to the right spot where the wrong letters are RNA guide strand (,cursor')
- 2. Delete the mistake, cutting out the wrong letters

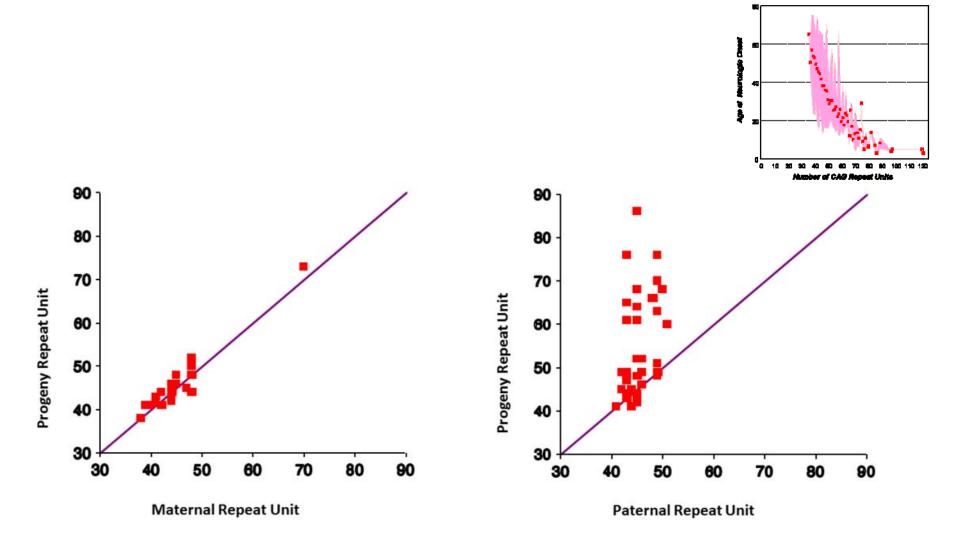
CRSPR-Cas9 (,scissor')

3. Correct the mistake, filling in the right letter DNA repair machinery (,retype')

- The cursor moves to wrong spots
- The scissors cut at the wrong places
- The scissors are recognized as foreign and attacked
- The repair goes wrong
- You have to get all things DELIVERED

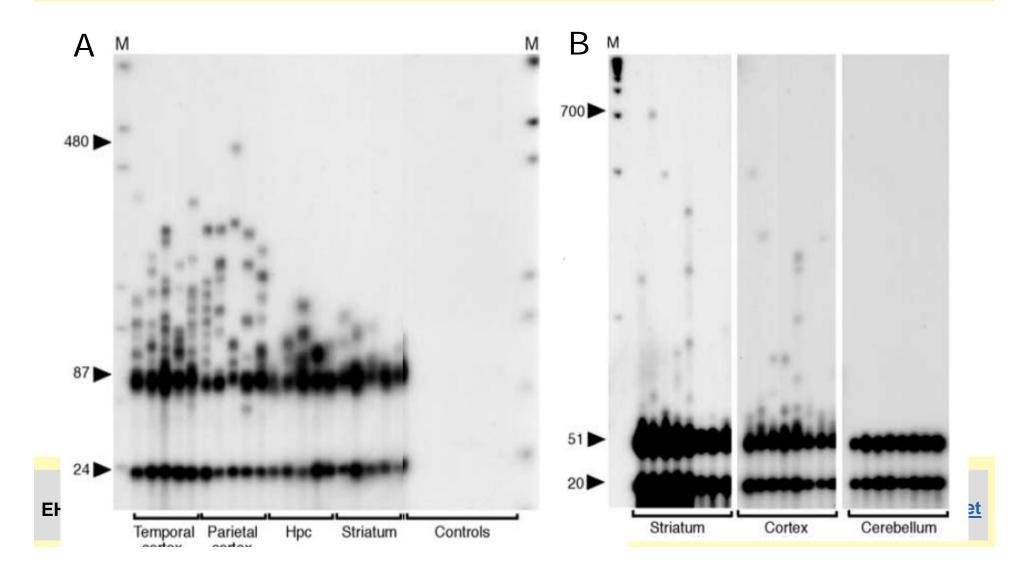
Correction of single cells or cell cultures is a reality, treatment of entire living organisms (100 billion cells in CNS alone) is fiction

Realistically it will take at least a decade before gene silencing therapeutics become a prescribe-able therapeutic option for HD expansion mutation carriers



Exciting science: changing CAG sizes through the DNA repair machinery – a new therapeutic target?

At the core of HD is the CAG expansion mutation


The CAG repeat expansion is intergenerationally instable

Is an ongoing, further increase of the dynamic CAG-expansion during the life of HD expansion carriers an important driver of clinical onset and progression?

Enourmous expansions can happen in brain of HD patients

Clues from experiments of nature – genetic modifier studies

Cell

0

Article

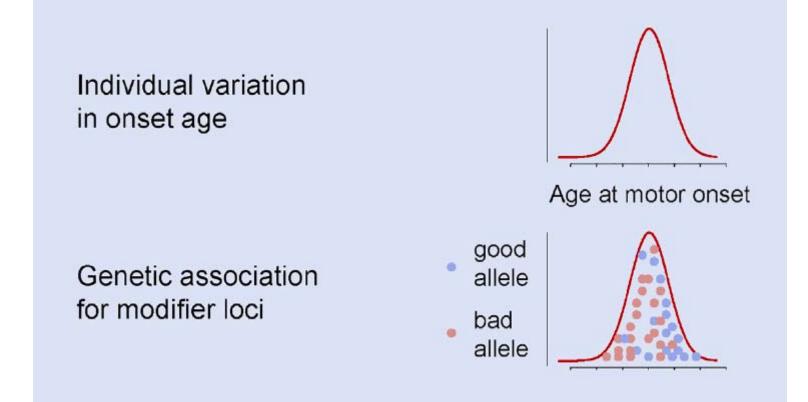
Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease

Genetic Modifiers of Huntington's Disease (GeM-HD) Consortium* *Correspondence: gusella@helix.mgh.harvard.edu http://dx.doi.org/10.1016/j.cell.2015.07.003

Cell 162, 516–526, July 30, 2015

The Genetic Modifiers of Huntington's Disease (GeM-HD) Consortium was organized into the following groups: GeM Group 1: Jong-Min Lee, Vanessa C. Wheeler, Michael J. Chao, Jean Paul G. Vonsattel, Ricardo Mouro Pinto, Diane Lucente, Kawther Abu-Elneel, Eliana Marisa Ramos, Jayalakshmi Srinidhi Mysore, Tammy Gillis, Marcy E. MacDonald, and James F. Gusella; GeM Group 2: Denise Harold, Timothy C. Stone, Valentina Escott-Price, Jun Han, Alexey Vedernikov, Peter Holmans, and Lesley Jones; GeM Group 3: Seung Kwak and Mithra Mahmoudi; GeM Group 4: Michael Orth and G. Bernhard Landwehrmeyer; Registry Investigators: Jane S. Paulsen; PREDICT-HD Investigators: E. Ray Dorsey and Ira Shoulson; COHORT, PHAROS, and TREND-HD Investigators; Richard H. Myers; and HD-MAPS Investigators.

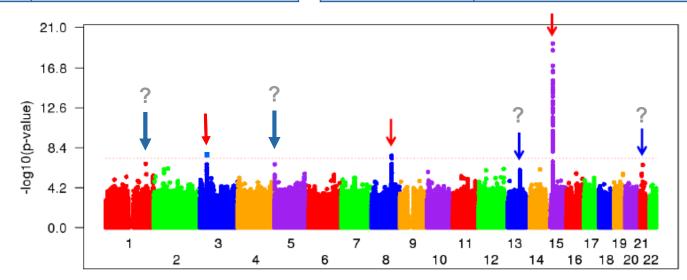
EHA 2017 ,Stronger Together' , Sofia September 24, 2017


The concept of genetic modifiers is straightforward to understand

Comparing two groups of beer lovers Beer is CAG expansion in the *HTT* gene Beer belly caused by drinking beer is HD TV time is a modifier of HD

Jong-Min Lee, Ph.D

Individual variation of onset age is in part (50%?) due to genetic variability in modifier genes



Number	4030 (all with MAOO data)
Platform	OmniExpress Exome Array
Sample origin	EHDN Registry
Clinical dataset	Onset, HDCC, repeat visits

GWAS 4:

Number	3400 (HDGEC) 60(IAC)
Platform	OmniExpress Exome Array
Sample origin	ENROLL-HD
Clinical dataset	Onset, HDCC, yr2 visits

DNA repair machinery plays and inportant role as genetic modifier of the onset of HD

Human Genetic Modifiers of Clinical Onset

Candidate Genes:

Chr3: *MLH1*- mismatch repair

Chr15: FAN1- inter-strand crosslink repair Chr8: RRM2B- DNA repair; UBR5-DNA damage

response

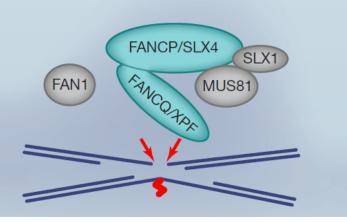
Results: Significance of individual SNPs

Significant (Bonferroni for 22 SNPs,8 disease groups (p<2.84x10⁻⁴)

SNP	Gene	Disease Group	2-sided p	Direction in GeM-HD?	
rs3512	FAN1	All (HD+SCAs)	1.52x10 ⁻⁵	Yes	
rs1805323	PMS2	All (HD+SCAs)	3.14x10 ⁻⁵	Yes	
rs3512	FAN1	All SCAs	2.22x10 ⁻⁴	Yes	
Significant (Bonferroni for 22 SNPs (p<2.27x10 ⁻³))					
rs1805323	PMS2	HD	3.14x10 ⁻⁵	Yes	
rs1805323	PMS2	SCA1	1.67x10 ⁻³	Yes	
rs1037699	RRM2B	SCA6	4.86x10 ⁻⁴	Yes	
rs1037700	RRM2B	SCA6	5.47x10 ⁻⁴	Yes	
rs5893603	RRM2B	SCA6	2.13x10 ⁻³	Yes	

Bettencourt et al. 2016

Annals of NEUROLOGY


An Official Journal of the American Neurological Association and the Child Neurology Society

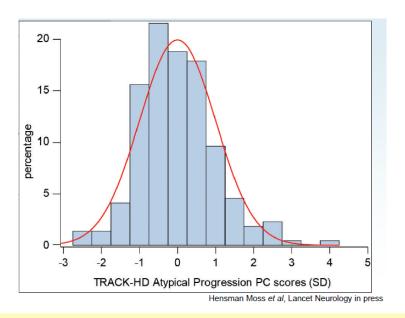
DNA Repair Pathways Underlie a Common Genetic Mechanism Modulating Onset in Polyglutamine Diseases

RESEARCH ARTICL

Conceição Bettencourt, PhD,^{1,2} Davina Hensman-Moss, MD,³ Michael Flower, MD,³ Sarah Wiethoff, MD,^{1,4} Alexis Brice, MD,^{5,6} Cyril Goizet, MD,^{7,8} Giovanni Stevanin, PhD,^{5,9} Georgios Koutsis, MD,¹⁰ Georgia Karadima, MD,¹⁰ Marios Panas, MD,¹⁰ Petra Yescas-Gómez, MD,¹¹ Lizbeth Esmeralda García-Velázquez, MSc,¹¹ María Elisa Alonso-Vilatela, MD,¹¹ Manuela Lima, PhD,^{12,13,14} Mafalda Raposo, BSc,^{12,13,14} Bryan Traynor, MD,¹⁵ Mary Sweeney, BSc,¹⁶ Nicholas Wood, MD,¹ Paola Giunti, MD,^{1,17} The SPATAX Network, Alexandra Durr, MD,^{5,6} Peter Holmans, PhD,¹⁸ Henry Houlden, MD,^{1,16} Sarah J. Tabrizi, MD,³ and Lesley Jones, PhD¹⁸

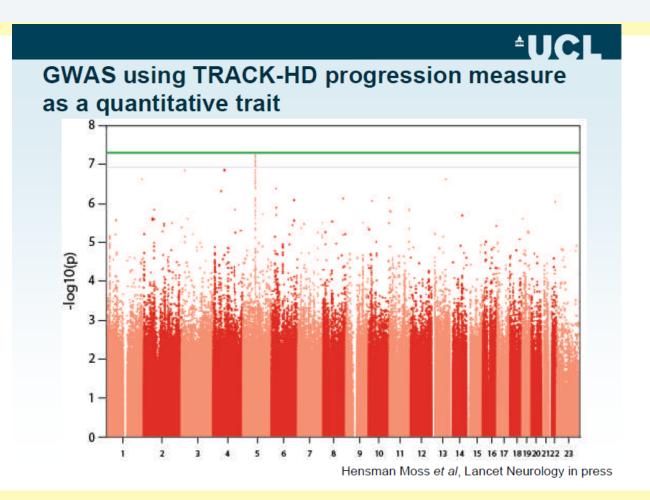
Nucleolytic processing proteins

Observations in HD patients suggest that a loss of FAN1 function leads to earlier onset; a FAN1 activator therefore would be required to modify HD onset pharmacologically


Identification of genetic variants associated with Huntington's disease progression

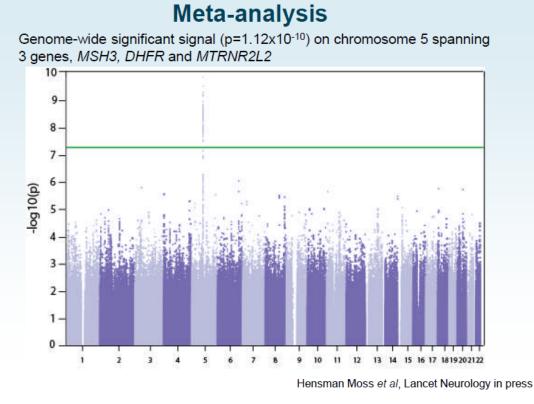
Dr Davina Hensman Moss (UCL)

Supervised by Prof Sarah J Tabrizi (UCL) and Prof Lesley Jones (Cardiff)


Defining multimodal scores as QTs

 A multimodal progression score was defined for Track-HD and REGISTRY participants and used as quantitative trait

EHA 2017 ,Stronger Together' , Sofia September 24, 2017


Locus on chromosome 5 spanning DHFR, MSH3 and MTRNR2LR

EHA 2017 , Stronger Together', Sofia September 24, 2017

MSH3 is likely a modifier of rate of progression in HD

UCL

 Previously implicated in model systems

 Operating likely through effects on somatic instability

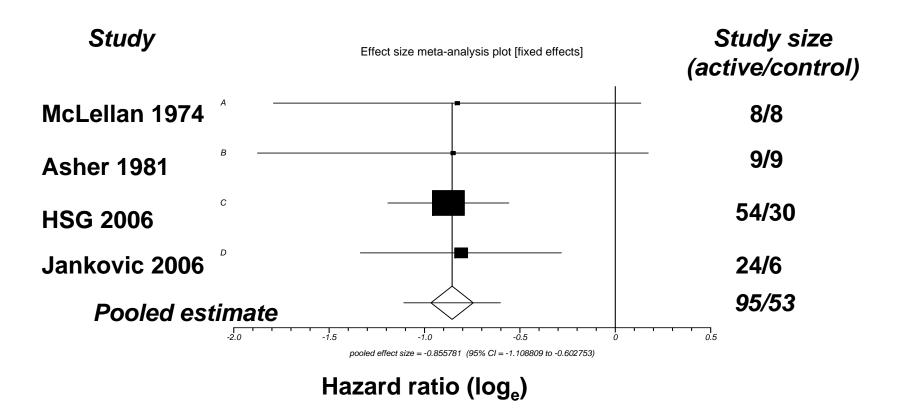
EHA 2017 ,Stronger Together' , Sofia September 24, 2017

Can the genetic modifiers identified be used as new drug targets?

The HD clinical trial landscape: a look back

Cochrane review I: symptom relief

Therapeutic interventions for symptomatic treatment in Huntington's disease (Review)


Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C

22 trials (1254 participants)

EHA 2017 , Stronger Together', Sofia September 24, 2017

A treatment to ameliorate chorea Tetrabenazine: RCTs - Forrest Plots

- Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescriped drugs in HD worldwide
- Not a single RCT supports this clinical practice
- So far no treatment is available to improve declining cognitive abilities

Therapeutic interventions for disease progression in Huntington's disease (Review)

Mestre T, Ferreira J, Coelho MM, Rosa M, Sampaio C

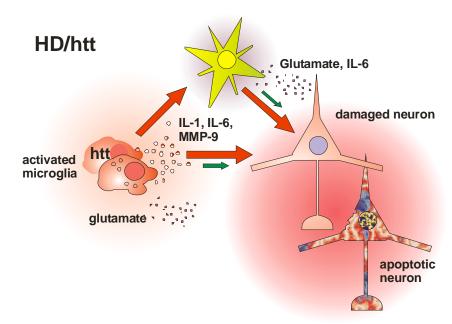
8 trials (1366 patients)

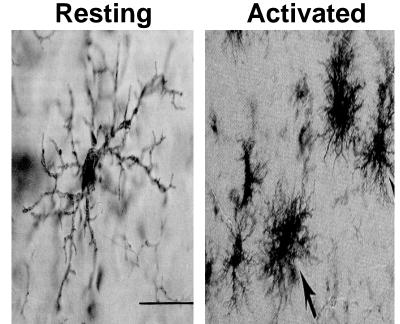
EHA 2017 , Stronger Together', Sofia September 24, 2017

- Riluzol
- Remacemide
- Lamotrigene
- Co-Q10

No study met the primary endpoint

- Creatine
- Ethyl-EPA




The Route to Success is to Go from Failure to Failure with Undiminshed Enthusiasm

Winston Churchill

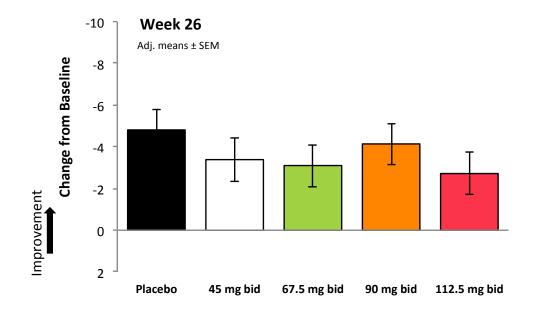
Targeting neuro-inflammation

 Neuroinflammation – a player in HD pathophysiology?
 Resting Activate

EHA 2017 ,Stronger Together' , Sofia September 24, 2017

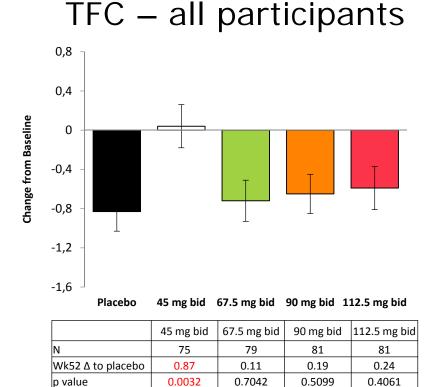
Legato-HD: a Multicenter, Multinational, Randomized, Double Blind, Placebo Controlled, Parallel Group Study to Evaluate the Efficacy and Safety of Laquinimod (0.5 and 1.0 mg/day) as Treatment in Patients with HD

Pride-HD: a Dose-Range Finding Study Evaluating the Efficacy and Safety of Pridopidine

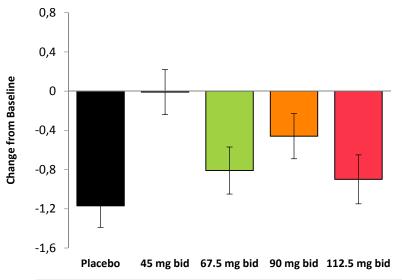


- Do higher dosages of pridopidine result in larger effect sizes?
- Are higher dosages well tolerated?
- Can a real-life benefit be demonstrated?
- Is it important how long patients are treated (6 vs 12 months)?

- Do higher dosages of pridopidine result in larger effect sizes? NO
- Are higher dosages well tolerated? YES
- Can a real-life benefit be demonstrated? MAYBE
- Is it important how long patients are treated (6 vs 12 months)? YES

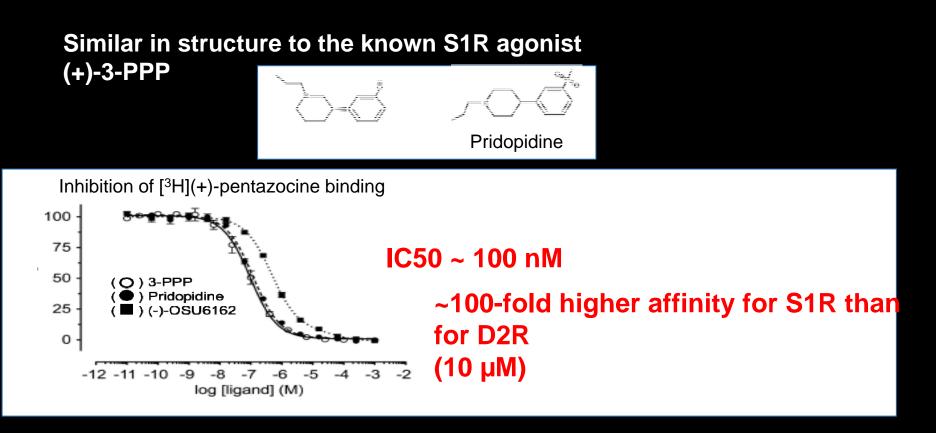


	45 mg bid	67.5 mg bid	90 mg bid	112.5 mg bid
Ν	75	79	81	81
Wk26 ∆ to placebo	1.42	1.71	0.67	2.1
p value	0.3199	0.2235	0.6282	0.1337

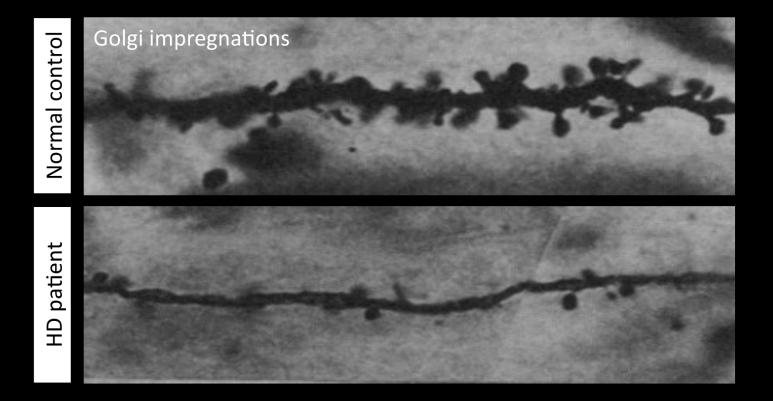

Total motor scores (TMS) improved at all dosages INCLUDING placebo

Does the numeric improvement in TMS have functional impact?

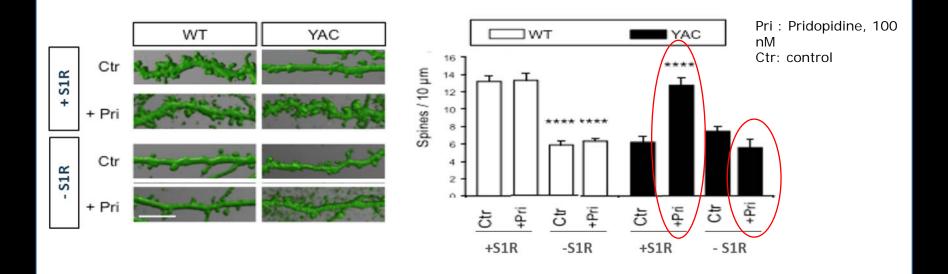
Pride-HD functional impact – TFC after 12 months of treatment



TFC – early stage participants


	45 mg bid	67.5 mg bid	90 mg bid	112.5 mg bid
N	59	54	56	58
Wk52 ∆ to placebo	1.16	0.36	0.71	0.27
p value	0.0003	0.2704	0.0239	0.4144

Pridopidine is a Sigma-1 receptor (S1R) ligand


Source: Sahlholm et al Molecular Psychiatry, 2013 (2-14), and Teva internal report

Medium spiny neurons (MSNs) have synaptic abnormalities in HD

Source: Graveland et al., (1985) Science

Pridopidine may prevent the loss of spines acting on S1R

- ✓ Pridopidine rescues spine loss in a YAC128 cellular model of HD
- Knock down of S1R abolished pridopidine's rescue effect

Source: Ilya Bezprozvanny lab (unpublished data)

A phase III trial may start in 2018

A continued effort: reducing the burden of HD by ameliorating disease signs and symptoms

HD is a disease of families – families need social and psychological support to be able to cope with an objective difficult situation

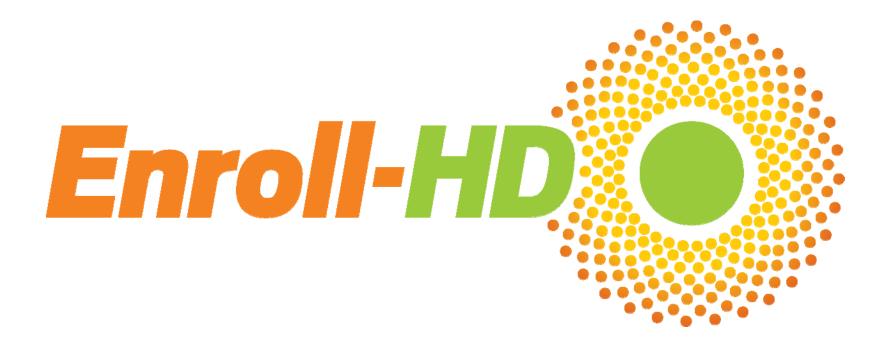
Case managers are crucial to help families to navigate the complex system to get real life access to help and assistance in principle available

Can a HD patient get better by currently available medical treatment?

An unequivocal 'YES'

- Low mood can be improved
- Irritability and aggression can get better
- Sleep problems can be fixed
- Lost weight can be regained
- Chorea can be suppressed (to some extent)
- The ability to move around can be improved

However, there are limits: all improvements do not last forever and new problems emerge



To make real advances in HD treatment options we need HD research

We want to bring HD research up to speed

Working together worldwide to address a disease that effects people all over the world: Enroll-HD

We need to get the balance right: HOPE & HELP For today (and tomorrow)

Thank you for your attention!

G. Bernhard Landwehrmeyer